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Abstract 

 
Scene Category Classification is one of the key areas of 

research in Computer Vision. In this project, we use 
convolutional neural networks to classify a sequence of 
images, obtained from video clips of a famous TV Series, 
according to their scene category. We have programmed 
our model using a computationally efficient averaging 
technique on frames which gives us a higher accuracy than 
techniques which do not employ the use of neural networks. 
 

1. Introduction 
 The field of image classification, especially multi-class 

classification, has taken major strides in the last half decade 
or so, thanks to the return of neural networks as a model for 
feature extraction and classification. Neural networks had 
fallen out of favor during the early 2000’s, but by 2012 
progress on accuracy in classification had stalled out 
between 70-75% (ImageNet Challenge 2012). It was then 
that a seminal paper on deep convolutional neural networks 
(Krizhevsky, et al. 2012 [1]) took the field by storm. Their 
implementation, SuperVision also known as AlexNet, 
immediately improved the state of the art by nearly 10 
points [2] and has been the cornerstone of many results 
since (their paper has received over 8000 citations in the 4 
years since it was published). 

Previous methods made use of engineered high level 
feature detectors, such as SIFT and HoG. A convolutional 
neural network is a “feature-less” implementation which 
uses a neural net to learn features and then classify images 
based on those learned features. CNNs are feed-forward 
networks which implement a convolutional layer that treats 
each image as a series of small, locally connected patches. 

This reduces the total number of parameters required to 
a manageable number. These parameters are then fed 
through many layers of convolution and pooling until the 
output is created and a classification result is produced. Our 
implementation makes use of a state-of-the-art very deep 
CNN implementation (Simonyan & Zisserman 2015 [3]) 
which has achieved very impressive results.  

2. Objective 
In this project, our goal was to evaluate image sequence 

data sourced from video of a prominent TV show, The Big 
Bang Theory. The data, “Big Bang Theory Video Thread 
Dataset,” consisted of many image frames separated out by 
shots and threads. From this data we wished to classify the 
set of images in a thread based on the background scene that 
they were filmed in front of. There were 13 different classes 
in total, from Comic Book Store to Living Room to Penny’s 
Bedroom. Our training and test data consisted of images 
from seasons 2 and 3 of the TV show. 

3. Structuring the Huge Dataset 
Our dataset needed to be structured before we could use 

it. A shot is a series of variable number of image frames that 
runs for an uninterrupted period of time. A thread is a group 
of some number of shots that is thought to contain the same 
person or object. For structuring this dataset, we wrote a 
small MATLAB script to fetch and store all Thread-IDs and 
Thread-Labels from a text file in a *.mat file so that it is 
easier for us to perform classification. Since different 
threads had different number of shots, and each shot had 
different number of frames, we had to adjust our script 
accordingly. 

4. Approach 
After deciding on the techniques to be used in building 

the learning model and processing the threads, we 
envisioned a streamlined approach. The first step in our 
approach was separating the data into a training set and a 
test set. Season 2 consisted of 3564 threads and season 3 
consisted of 3468 threads. Our classifications were 13 
multi-class labels based on the background location of each 
scene in the show. 

We designate the first 3000 threads in each season as 
training data, and the remaining 564 & 468 threads as test 
data. Next we translated the images into image vectors 
using the VGG16 network. On the feature vectors, we 
trained supervised learning model that classifies the 
resulting feature vectors and evaluated our results. The 
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classifier was trained only on the training data and tested 
only on the test data. 

5. Procedure 
The first step in our procedure was translating the images 

into feature vectors recognizable by our classifier. For this 
purpose, we used the pre-trained CNN VGG16 Very Deep 
Network provided by the Visual Geometry Group at Oxford 
(Simonyan & Zisserman). We implemented this network 
using the MatConvNet in Matlab2016b by VLFeat. The 
CNN we use is a linear sequence of computational layers. 

Our MATLAB script traverses the dataset iteratively by 
selecting a thread, identifying the sequence of shots and the 
number of frames in that shot. Then it obtains the VGG16 
representations of all frames in the thread by getting 
cropped and flipped images from each frame. Finally, we 
feed these representations to our Logistic Regression CNN 
model which gets trained over 15 epochs. To translate the 
data into the CNN we iterated through the training data by 
thread and by frame within each thread. For each image 
frame we sampled 10 patches of approximately 224x224 
pixels from each image.  First one patch from each corner 
and one from the middle, then the image is flipped 
horizontally and 5 more patches are sampled. Each patch is 
fed into the CNN which produces an output image feature 
vector at the layer before the last layer, of dimension 
1x1x4096. The ten 4096-dimensional feature vectors are 
averaged together to produce an overall feature vector for 
each image. The feature vectors for each image in the thread 
were then averaged together to produce a single final vector 
for each thread. 

This procedure was repeated for every image in the 
training set. After these feature vectors were composed, 
they were fed into a stochastic gradient descent algorithm 
with momentum which evaluates the total loss incurred 

when predicting on the training set. 
This is a learning process, which means that the 

network’s parameters will be learned through iteration on a 
training set to improve the results on a separate test set. In 
our method, we used 15 epochs with a batch size of 100 and 
a learning rate of 0.001 in our training step. After each 
epoch gradient descent is used to update the parameters in 
the direction that reduces loss the most. 

Once training is complete, the feature vector extraction 
procedure outlined above is repeated on the test set. Once 
the vector for each thread has been found, this data set is 
run through our algorithm and each vector gets a likelihood 
number assigned for each class label. We choose the label 
with the highest likelihood and compare that to the true 

Figure 1: The Procedure 

Figure 2: The Top-1 & Top-5 Errors over the Training Dataset 
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label known from our database. The percentage of threads 
that were correctly predicted through this method is 
reported as our accuracy. We use a streamlined procedure 
to train and test our datasets. After studying some key 
research papers in the area and exploring what technique 
could work the best, we identified that we can obtain a 
considerably good accuracy by averaging the VGG16 
representations of different shots and frames in a thread.  

 
Obtaining feature vectors for a single thread, which has 

multiple shots and each shot having multiple frames takes a 
lot of time. As shown in Figure 2, we have successfully 
trained our model with 6000 threads and have tested it over 
1032 different threads.  

6. Results 
  Based on the above procedure, our model was trained 

achieving an accuracy of around 80.8139%. Figure 2 shows 
the objective, top1err and top5err for our final model 

trained with 6000 different threads each thread containing 
some shots, and each shot containing some frames. The 
model was trained over 15 epochs and 6000 threads with 13 
different categories such as “Cafeteria”, “Car”, “Comic 
Store”, “Hallway”, “Living Room”, “Sheldon’s Room” etc. 
Our preliminary study shows that simply averaging the 
representations of different frames in the same shot in a 
particular thread leads to a very high accuracy score. The 
Top-1 Error is reduced to less than 0.1 by the last epoch, 
and Top-5 Error is reduced to almost zero, which is a 
considerably good performance for a classification model. 

Figure 4 shows the metrics and scores which briefly 
summarize our main results. Note that some classes did not 
have true samples in the test data and therefore Recall and 
F1-Score were ill-defined and have been set to 0.0.  

We have also included the confusion matrix for our test 
data (Figure 3), which shows where our predicted labels 
differed from the actual labels and the classes that were 
erroneously picked instead of the true label. The most 
common label to be wrongly picked was 8 - Living Room, 
particularly when the true label was one of the other rooms, 
such as 6 - Kitchen, 9 - Leonard’s Bedroom, and 11 - 
Penny’s Room. This can be seen in Table 2 below. This 
makes sense because different rooms in an apartment will 
still have some commonalities, especially in comparison to 
areas like 5 - Hallway or a place of business like 4 - Comic 
Book Store. 

Overall, our average F1-score for all labels in the test 
data was 0.81, with a Precision of 0.82 and Recall of 0.81.  
We are also currently exploring other techniques apart from 
averaging the VGG16 representations of different frames in 

Figure 3: The Confusion Matrix 

Figure 4: Model Evaluation 
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the same shots in a particular thread which are not only 
accurate but also computationally faster. 

7. Conclusions 
We achieved our results by using a supervised learning 

method that implemented a deep neural network with 
training parameters to extract our un-engineered features, 
followed by a logistic regression classifier which was 
trained using a stochastic gradient descent algorithm to 
improve its classification accuracy. Our vector results were 
combined through a simple averaging for each image and 
again for each thread of images. Our F1-Score of 0.81 
means that we were able to fairly accurately predict the 
correct class in each thread in our test set. 

We conclude that our methods were sound and the 
algorithms that we implemented are effective at 
accomplishing the task outlined in the earlier section above. 
Further work with more extensive training data could 
improve these results, as well as different methods of 
combining feature vectors for images within a thread can 
improve the results drastically. An algorithm that does more 
sophisticated feature selection to better enhance the 
differences between similar classes also has strong potential 
to increase classification accuracy. 
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