

 1

Abstract

Scene Category Classification is one of the key areas of

research in Computer Vision. In this project, we use
convolutional neural networks to classify a sequence of
images, obtained from video clips of a famous TV Series,
according to their scene category. We have programmed
our model using a computationally efficient averaging
technique on frames which gives us a higher accuracy than
techniques which do not employ the use of neural networks.

1. Introduction
 The field of image classification, especially multi-class

classification, has taken major strides in the last half decade
or so, thanks to the return of neural networks as a model for
feature extraction and classification. Neural networks had
fallen out of favor during the early 2000’s, but by 2012
progress on accuracy in classification had stalled out
between 70-75% (ImageNet Challenge 2012). It was then
that a seminal paper on deep convolutional neural networks
(Krizhevsky, et al. 2012 [1]) took the field by storm. Their
implementation, SuperVision also known as AlexNet,
immediately improved the state of the art by nearly 10
points [2] and has been the cornerstone of many results
since (their paper has received over 8000 citations in the 4
years since it was published).

Previous methods made use of engineered high level
feature detectors, such as SIFT and HoG. A convolutional
neural network is a “feature-less” implementation which
uses a neural net to learn features and then classify images
based on those learned features. CNNs are feed-forward
networks which implement a convolutional layer that treats
each image as a series of small, locally connected patches.

This reduces the total number of parameters required to
a manageable number. These parameters are then fed
through many layers of convolution and pooling until the
output is created and a classification result is produced. Our
implementation makes use of a state-of-the-art very deep
CNN implementation (Simonyan & Zisserman 2015 [3])
which has achieved very impressive results.

2. Objective
In this project, our goal was to evaluate image sequence

data sourced from video of a prominent TV show, The Big
Bang Theory. The data, “Big Bang Theory Video Thread
Dataset,” consisted of many image frames separated out by
shots and threads. From this data we wished to classify the
set of images in a thread based on the background scene that
they were filmed in front of. There were 13 different classes
in total, from Comic Book Store to Living Room to Penny’s
Bedroom. Our training and test data consisted of images
from seasons 2 and 3 of the TV show.

3. Structuring the Huge Dataset
Our dataset needed to be structured before we could use

it. A shot is a series of variable number of image frames that
runs for an uninterrupted period of time. A thread is a group
of some number of shots that is thought to contain the same
person or object. For structuring this dataset, we wrote a
small MATLAB script to fetch and store all Thread-IDs and
Thread-Labels from a text file in a *.mat file so that it is
easier for us to perform classification. Since different
threads had different number of shots, and each shot had
different number of frames, we had to adjust our script
accordingly.

4. Approach
After deciding on the techniques to be used in building

the learning model and processing the threads, we
envisioned a streamlined approach. The first step in our
approach was separating the data into a training set and a
test set. Season 2 consisted of 3564 threads and season 3
consisted of 3468 threads. Our classifications were 13
multi-class labels based on the background location of each
scene in the show.

We designate the first 3000 threads in each season as
training data, and the remaining 564 & 468 threads as test
data. Next we translated the images into image vectors
using the VGG16 network. On the feature vectors, we
trained supervised learning model that classifies the
resulting feature vectors and evaluated our results. The

Scene Category Classification for TV Series

Abhinandan Dubey

Stony Brook University
New York, USA

adubey@cs.stonybrook.edu

Russell Walker
Stony Brook University

New York, USA
rtwalker@cs.stonybrook.edu

 2

classifier was trained only on the training data and tested
only on the test data.

5. Procedure
The first step in our procedure was translating the images

into feature vectors recognizable by our classifier. For this
purpose, we used the pre-trained CNN VGG16 Very Deep
Network provided by the Visual Geometry Group at Oxford
(Simonyan & Zisserman). We implemented this network
using the MatConvNet in Matlab2016b by VLFeat. The
CNN we use is a linear sequence of computational layers.

Our MATLAB script traverses the dataset iteratively by
selecting a thread, identifying the sequence of shots and the
number of frames in that shot. Then it obtains the VGG16
representations of all frames in the thread by getting
cropped and flipped images from each frame. Finally, we
feed these representations to our Logistic Regression CNN
model which gets trained over 15 epochs. To translate the
data into the CNN we iterated through the training data by
thread and by frame within each thread. For each image
frame we sampled 10 patches of approximately 224x224
pixels from each image. First one patch from each corner
and one from the middle, then the image is flipped
horizontally and 5 more patches are sampled. Each patch is
fed into the CNN which produces an output image feature
vector at the layer before the last layer, of dimension
1x1x4096. The ten 4096-dimensional feature vectors are
averaged together to produce an overall feature vector for
each image. The feature vectors for each image in the thread
were then averaged together to produce a single final vector
for each thread.

This procedure was repeated for every image in the
training set. After these feature vectors were composed,
they were fed into a stochastic gradient descent algorithm
with momentum which evaluates the total loss incurred

when predicting on the training set.
This is a learning process, which means that the

network’s parameters will be learned through iteration on a
training set to improve the results on a separate test set. In
our method, we used 15 epochs with a batch size of 100 and
a learning rate of 0.001 in our training step. After each
epoch gradient descent is used to update the parameters in
the direction that reduces loss the most.

Once training is complete, the feature vector extraction
procedure outlined above is repeated on the test set. Once
the vector for each thread has been found, this data set is
run through our algorithm and each vector gets a likelihood
number assigned for each class label. We choose the label
with the highest likelihood and compare that to the true

Figure 1: The Procedure

Figure 2: The Top-1 & Top-5 Errors over the Training Dataset

 3

label known from our database. The percentage of threads
that were correctly predicted through this method is
reported as our accuracy. We use a streamlined procedure
to train and test our datasets. After studying some key
research papers in the area and exploring what technique
could work the best, we identified that we can obtain a
considerably good accuracy by averaging the VGG16
representations of different shots and frames in a thread.

Obtaining feature vectors for a single thread, which has

multiple shots and each shot having multiple frames takes a
lot of time. As shown in Figure 2, we have successfully
trained our model with 6000 threads and have tested it over
1032 different threads.

6. Results
 Based on the above procedure, our model was trained

achieving an accuracy of around 80.8139%. Figure 2 shows
the objective, top1err and top5err for our final model

trained with 6000 different threads each thread containing
some shots, and each shot containing some frames. The
model was trained over 15 epochs and 6000 threads with 13
different categories such as “Cafeteria”, “Car”, “Comic
Store”, “Hallway”, “Living Room”, “Sheldon’s Room” etc.
Our preliminary study shows that simply averaging the
representations of different frames in the same shot in a
particular thread leads to a very high accuracy score. The
Top-1 Error is reduced to less than 0.1 by the last epoch,
and Top-5 Error is reduced to almost zero, which is a
considerably good performance for a classification model.

Figure 4 shows the metrics and scores which briefly
summarize our main results. Note that some classes did not
have true samples in the test data and therefore Recall and
F1-Score were ill-defined and have been set to 0.0.

We have also included the confusion matrix for our test
data (Figure 3), which shows where our predicted labels
differed from the actual labels and the classes that were
erroneously picked instead of the true label. The most
common label to be wrongly picked was 8 - Living Room,
particularly when the true label was one of the other rooms,
such as 6 - Kitchen, 9 - Leonard’s Bedroom, and 11 -
Penny’s Room. This can be seen in Table 2 below. This
makes sense because different rooms in an apartment will
still have some commonalities, especially in comparison to
areas like 5 - Hallway or a place of business like 4 - Comic
Book Store.

Overall, our average F1-score for all labels in the test
data was 0.81, with a Precision of 0.82 and Recall of 0.81.
We are also currently exploring other techniques apart from
averaging the VGG16 representations of different frames in

Figure 3: The Confusion Matrix

Figure 4: Model Evaluation

 4

the same shots in a particular thread which are not only
accurate but also computationally faster.

7. Conclusions
We achieved our results by using a supervised learning

method that implemented a deep neural network with
training parameters to extract our un-engineered features,
followed by a logistic regression classifier which was
trained using a stochastic gradient descent algorithm to
improve its classification accuracy. Our vector results were
combined through a simple averaging for each image and
again for each thread of images. Our F1-Score of 0.81
means that we were able to fairly accurately predict the
correct class in each thread in our test set.

We conclude that our methods were sound and the
algorithms that we implemented are effective at
accomplishing the task outlined in the earlier section above.
Further work with more extensive training data could
improve these results, as well as different methods of
combining feature vectors for images within a thread can
improve the results drastically. An algorithm that does more
sophisticated feature selection to better enhance the
differences between similar classes also has strong potential
to increase classification accuracy.

8. References
[1] Alex Krizhevsky et al., “ImageNet Classification with
Deep Convolutional Neural Networks” NIPS 2012:
https://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf

[2] Xavier Giro, “Deep Learning for Computer Vision:
ImageNet Challenge”- Summer Seminar – UPC Telecom
Slide 6 - http://www.slideshare.net/xavigiro/deep-learning-
for-computer-vision-imagenet-challenge-upc-2016

[3] Karen Simonyan & Andrew Zisserman, “Very deep
convolutional networks for large-scale image recognition”
ICLR 2015: https://arxiv.org/pdf/1409.1556.pdf

[4] Andrea Vedaldi, Karel Lenc, Ankush Gupta - VLFeat –
MatConvNet - Convolutional Neural Networks for
MATLAB.

