
An Experimental Comparison of Memory Bounded & Iterative Deepening

A* Algorithm

Abhinandan Dubey
Stony Brook University, New York - USA

October 09, 2016

1 Heuristics

We have used the following as heurstics analyze the problem:

1. Manhattan Distance : This is basically the sum of horizontal and vertical distance from the current position of
the tiles to their goal positions. More formally, for a k-puzzle problem, the value of this heuristic h(sc) on a current
state sc and a goal state sg is given by ;

h(sc) =

k∑
n=1

(| xn(sc)− xn(sg) | + | yn(sc)− yn(sg) |)

where xn and yn denote the coordinates of the element (point) in the matrix.

The heuristic is admissible because it is the sum of the distances from the actual positions of all tiles to their
goal positions, the term h(sc) in the above expression always underestimates the actual solution path length. The
reason is never over-estimates is that it is a distance metric, and measures the shortest path length between the
two points.

2. Number of misplaced tiles (NMT) : It is the count of the number of tiles which are not on their actual positions

The heuristic is admissible because it is simply a count of tiles that are incorrectly placed. The count can never be
an over-estimate as it is basically showing the difference between the current state and the goal state.

2 Memory Issue with A*

The A* algorithm requires to maintain a list of already visited nodes and a queue of nodes which have to be visited
according to the priority (open-list). This results in a problem when the test case for the problem is complex enough for
A* to keep looking for the goal state while increasing the number of visited nodes.

If we use a heuristic which is just a constant, A* will become a uniform cost search, and the space it requires would
hence increase exponentially with the input size.

To solve the 15-puzzle problem, lets consider the worst case space requirement by A*. The algorithm keeps all visited
nodes in the memory, which is exponential. In the worst case, where every step ever taken is wrong, there will be an
exponential number of nodes in the queue before reaching the goal node.

3 Memory Bounded Search Algorithm - IDA*

We have implemented Iterative Deepening A* as my memory bounded search algorithm. The algorithm has a memory
bound on the f − values of the nodes. The procedure starts with a relatively low value of f , which is declared as maxf
in the code. It then performs A* over the start state, and checks at every step if the f − value of the state is below
the maximum value of f allowed in that stage. If it is not, then the loop breaks, and the algorithm starts with a higher
bound which is sum of the current bound and the minimum value of f seen till now.

It is important to note that the f − values we’re talking about here are the values of

f(s) = g(s) + h(s)

Completeness: The method is complete because it always finds a solution if it exists. This is obvious from the
fact that if we call this with a very high value of maxf , the algorithm is same as A*
Optimality: Since the algorithm starts with an upper bound to reach the goal, and proceeds with an A*, since this now

1

reduces to an A* with a bound, it is necessarily finite and thus gives an output in finite time.

Complexity Analysis:

Space : Since IDA* does not keep a list of all nodes except the ones on the current path, it requires linear amount
of space in terms of the length of the path it finds to the goal node.

Time : The time complexity of IDA* will also depend on the maximum value of f that it is initiated with. It expands
all the nodes in the frontier of the initial state with f-values less than the value of maxf supplied. Since this implemen-
tation of A* uses a priority queue, it expands all the nodes in the queue, which is same as A* (in the last step, where
it finds the solution). Thus, the final stage of IDA*, where it finds the goal state, expands the same set of nodes as A*.
Thus asymptotically, IDA* expands the same number of nodes as A*.

4 Performance of A* Implementation

We tested our algorithms on randomly generated set of 10 8-Puzzle problems using a random test case generator, and a
set of 10 15-Puzzle problems using the same. We have provided the test cases in randomtestcases.zip

Table 1: Performance of A*
Test Case Number Number of States explored Time (in millisec) Depth

Manhattan Dist. NMT Manhattan Dist. NMT Manhattan Dist. NMT
1 185 147 19.210100174 5.8810710907 64 22
2 407 1011 40.9898757935 93.6398506165 50 70
3 154 462 17.548084259 33.0278873444 40 34
4 165 852 14.2951011658 72.9451179504 40 44
5 73 377 9.43112373352 20.9939479828 24 28
6 58 197 4.5690536499 9.41395759583 22 36
7 188 1499 19.2420482635 172.061920166 50 48
8 489 266 59.0319633484 15.3639316559 50 26
9 66 401 5.42402267456 24.6870517731 22 50
10 7 8 0.679016113281 0.540018081665 6 6
11 155 47 23.453950882 1.7409324646 16 16
12 3209 376 1049.30496216 30.6560993195 25 25
13 12652 7242 13851.8650532 4678.20501328 136 200
14 11 12 1.72090530396 0.550031661987 10 10
15 17 100 2.37607955933 4.76503372192 11 11
16 1942 11040 497.585058212 13233.9830399 122 214
17 6942 15688 3970.51310539 26248.0208874 224 232
18 3 3 0.827789306641 1.36113166809 2 2
19 85 1643 11.2509727478 282.732009888 27 47
20 4507 3106 1858.24799538 824.815988541 70 132

xxx

2

