
Analysis of Neural Network Architectures for Supervised Classification

Abhinandan Dubey
Stony Brook University

New York, USA

Teja Madiraju
Stony Brook University

New York, USA

Abstract

Many supervised learning algorithms are available to-
day for solving prediction problems. Of them, artificial
neural networks have been consistently known to per-
form well for most classes of problems. In our project,
we perform a high-level comparative analysis of five
different neural network architectures. The motivation
behind this series of experiments is to understand the
nature of these neural networks in the backdrop of cer-
tain basic variations in the dataset.

Introduction
Problem : To analyze the performance of various types of
neural network architectures including Feed-forward Neural
Networks and Competitive Networks over a supervised
classification problem using various metrics.

Motivation : With many choices being available for data
scientists and industry experts dealing with classification
tasks, it becomes critical to analyze the performaces of these
models on varieties of problems available to us. In 5 years,
we can expect neural networks to manage services and ports
(Karagiannis 2016). Thus, we need to perform a holistic
analysis which gives us results for these classification
problems

Contributions : For our analysis, we performed a back-
ward feature selection algorithm to select the most dominant
features for our dataset which involves the identification of
credit defaulters based on their demographics and history
of accounts. On the best selection set of features, we im-
plemented and analyzed the performance of the most com-
monly used neural network architectures:

1. Single Layer Perceptrons (SLP)
2. Multilayer Perceptrons (MLP)
3. Hopfield Recurrent Networks
4. Learning Vector Quantization (LVQ)
5. Competitive Layer - Kohonen Network
Learning Outcomes : From our extensive analysis, we
were able to understand the inner working of various neural
networks which have been explained below. Additionally,

we were able to analyze the performance of different neural
network architectures for varieties of classification task. We
learnt that neural network models crafted specifically for
pattern finding perform poorly at binary classification tasks
involving a set of training data.

Neural networks are highly adaptable models which get
trained over abstract functions that are built up from a
cascade of interleaved layers, each of which is a group of
perceptrons termed as ’nodes.’ Although a single perceptron
is just a binary linear classifier which partitions space into
different categories or classes. A perceptron has a capability
of deciding whether a set of inputs lie within or outside a
boundary, which is a linear n− 1 dimension hyperplane for
n input features.

The linearity of these baseline models prevents them from
being used in training on datasets with non-linear func-
tion mappings. Thus, we introduce some non-linearity using
ReLU or Rectificied Linear Units. A smoothing function ap-
proximation to such rectifier is the analytic function defined
as;

f(x) = ln(1 + ex)

which is called the softplus function. More specifically,
perceptrons associate a weights wi with each feature to cal-
culate. Thus creating a lot of weights that are initialized with
random values. The goal of training is to get the appropriate
values for these weights. The whole neural network model
works by calculating the values using weighted sums over a
threshold function that binarizes the output.

The choice of the smoothing functions can cause huge
variations in the metrics. It is critical for a model to use ap-
propriate functions. For our analysis, we have used the sig-
moid function wherever possible. The sigmoid function is a
special case of the logistic function defined as;

σ(z) =
1

1 + e−z

We use the library neurolab (Evgenij 2013) which pro-
vides helper functions for creating and training these net-
works. We use sklearn (Pedregosa et al. 2011) for evalu-
ation purposes.

Description
Backward Feature Selection
We implemented a backward feature selection algorithm
starting with 11 features and selectively removing the fea-
tures which corrupt the learning models. This allowed us to
achieve considerably good accuracies. We have tried to in-
clude as much detail as possible about it in the report. The
full results can be found in the results files in the code at-
tached with our submission.

Single Layer Perceptron
The single layer perceptron is the most basic feed-forward
neural network. The input that we have supplied to it are
22498x6-element feature vectors.

The perceptron is effectively a function that maps its input
x (a real-valued vector) to an output value. The goal is to
compute the sum:

m∑
i=0

wixi

, where m is the number of inputs, which is to the percep-
tron and b is the bias. The bias can shift the decision bound-
ary away from the origin. The bias value cannot be supplied
explicitly, however, the input feature ranges have to be sup-
plied to the library function as:

net = nl.net.newp([[-7, 7]]*6, 1)

Figure 1: Single Layer Perceptron

Multilayer Perceptron
A Multi Layer Perceptron (MLP) extends the idea of single
layer perceptron to multiple layers. An MLP contains one
or more hidden layers (apart from the input and the output
layer). The basic idea is to extend Single Layer Perceptron
to be able to learn non-linear functions.

We represent the error in output node j in the nth data
point (training example) by

ej(n) = dj(n)− yj(n)

where d is the target value and y is the value produced by
the perceptron. In our case, y is a binary value 0 or 1 de-
pending upon the class of the output. The goal is to update
the weights of the nodes based on those corrections which
minimize the error in the entire output, given by

E(n) =
1

2

∑
j

e2j (n)

Using gradient descent, we find our change in each weight
to be

∆wji(n) = −η ∂E(n)

∂vj(n)

where yi is the output of the previous neuron and η is the
learning rate, which is carefully selected to ensure that the
weights converge to a response fast enough, without produc-
ing oscillations. This is taken care of, by our library, how-
ever, one can pass a learning rate value. We have defined our
network as

net = nl.net.newff([[-7, 7]] * 6,
[hidden_nodes, 1], transf =
[nl.trans.LogSig()] * 2)

It is important here to note that we have explicitly sup-
plied the Sigmoid function to be used. The hidden nodes
denote the number of hidden layer nodes you want in the
network. We have used 2 and 3 nodes to train on our models
and evaluate their performance.

Competitive Layer - Kohonen Network
A Kohonen network is composed of an initial input layer
and an a preset output layer with multiple competing units
in the hidden layer in between. The network learns on the
training patterns provided to the input layer. The neurons in
the competing layer compete to respond to the input pattern.
The unit whose weights are closest to the current input (Eu-
clidean distance), becomes activated as the layer influencing
the input. It is called the Best Matching Unit (BMU). Based
on the position of the BMU, the neighboring neurons are ad-
justed for weights. The weight to adjust for each neighbor is
given by the below formula.

ni(t+ 1) = ni(t) + h ∗ [v(t)− ni − ni(t)]

n(t) = weight vector of neuron i at regression step t
v(t) = input vector at regression step t
h = neighborhood function

Each set of feature values in our data set was treated as an
input pattern. Each output of the network is a tuple that rep-
resents the result of the classification on the data point. The
Neurolab implementation used in our calculations is given
as below

net = neurolab.net.newc(minmax, cn)

minmax is the range of values for each of our 6 features
cn is the number of neurons in the output layer.

Learning Vector Quantization
Learning Vector Quantization (LVQ) is a classification tech-
nique implemented as a supervised version of vector quan-
tization. It is similar to a Self-Organizing Map (SOM) with
input vectors (x) and weight vectors except (Wi) that it has
associated class information on its input data points. The
LVQ algorithm starts from a trained SOM (same as the one
used in Kohonen Network) and uses the classification labels
of input data to generate the classification labels of eachWi,
the nearest neighbor neurons. Each input cell without a class
label can be assigned to the class of the nearest neighbor cell

it falls within. The Neurolab implementation used in our cal-
culations is given as below

net = neurolab.net.newlvq(minmax, cn0,
pc)

minmax is the range of values for input features
cn0 is the number of neurons in the input layer
pc is the percent list that sums to 1

Hopfield Networks

The purpose of a Hopfield net is to store specific patterns
and to recall the target patterns based on some (generally
distorted) input patterns. Our problem had some training fea-
tures. We used these training features over a HopField Net-
work that accepts six features as the input. The network gets
trained to identify such patterns and produces a most likely
pattern as an output. NeuroLab implements them as:

net = nl.net.newhop(target)

The variable target denotes the floating point values
for the target feature patterns that have to be identified
in the input. More specifically, since Hopfield nets can
serve as content-addressable memory systems with binary
threshold nodes, we are just creating a fully connected
6-layer network 1 which can adapt according to these
training data patterns. Hopfield Network uses The Hebbian
Theory (Hebb 2002) for training the neurons. It can be
briefly understood as
”Neurons that fire together, wire together. Neurons that fire
out of sync, fail to link”.

The Hebbian rule is both local and incremental. For the
Hopfield Networks, it is implemented in the following man-
ner, when learning n binary patterns:

wij =
1

n

n∑
µ=1

εµi ε
µ
j

where εµi represents bit i from pattern µ.

Figure 2: Hopfield Network

1self loops hold zero weights

Evaluation
Single Layer Perceptron

The single layer perceptron model achieves a quite good ac-
curacy with an average precision of 0.73. As shown below,
the single layer perceptron model is a baseline model and
thus this much of accuracy is expected.

Table 1: Evaluation - Single Layer Perceptron
Precision Recall F1 Score Support

0 - Non-Defaulter 0.83 0.84 0.83 5842
1 - Defaulter 0.41 0.38 0.39 1660
Average 0.73 0.74 0.74 7502

The most likely reason is the linearity of the functions
that can be trained in a single layer perceptron. Since the
model cannot learn non-linear functions, it won’t be able to
achieve a great acccuracy. The figure shows the training over
the epochs.

Figure 3: Single Layer Perceptron - Sum-Squared Errors

Multilayer Perceptron

The multilayer perceptron achieves a very good accuracy
and precision

Table 2: Evaluation - Multilayer Perceptron - 3 Hidden
Nodes, 6 Features

Precision Recall F1 Score Support
0 - Non-Defaulter 0.84 0.96 0.90 5842
1 - Defaulter 0.73 0.35 0.47 1660
Average 0.81 0.83 0.83 7502

The most likely reason of such high accuracy (compared
to other models) is likely because of the fact that multilayer
perceptron can deal with non-linearity very effectively be-
cause of having a cascade of layers.

Figure 4: Multilayer Perceptron - 11 Features

Figure 5: Multilayer Perceptron - 6 Features

Competing Layer- Kohonen Networks
The evaluation measures obtained upon training the data set
on Kohonen Network indicate that the network has a good
performance. Kohonen Network works well on our dataset
because of the consistent nature of distribution of data re-
sulting in the presence of sufficient number of completely
defined input patterns. As a result, the self-organizing na-
ture of the weights on the competing layer is strengthened to
produce good predictions on test data.

Table 3: Evaluation - Competing Layer- Kohonen Networks
Precision Recall F1 Score Support

0 - Non-Defaulter 0.84 0.96 0.88 5842
1 - Defaulter 0.62 0.36 0.46 1660
Average 0.79 0.81 0.79 7502

Learning Vector Quantization
The strength of the LVQ technique lies in its ability to clas-
sify data inputs properly. However, our data set comes with

Figure 6: Kohonen Network - Sum-Squared Errors

predetermined classification of a user being a defaulter or
othwerwise. This is possibly why LVQ produces distinctly
low results on our datasets prediction problem. There are al-
most no unclassified input data to be grouped according to
the class similarities, therefore resulting in low F1 score. The
below table is an evaluation of the LVQ implementation on
our data set.

Figure 7: Learning Vector Quantization - Sum-Squared Er-
rors

Table 4: Evaluation - Learning Vector Quantization
Precision Recall F1 Score Support

0 - Non-Defaulter 0.76 0.02 0.03 5842
1 - Defaulter 0.22 0.98 0.36 1660
Average 0.64 0.23 0.11 7502

Hopfield Networks
The metrics obtained upon the results clearly show that
Hopfield Networks perform poorly on basic classification
task which cannot be properly framed as pattern-recognition
problems. Another reason why their performance was con-
siderably lower than the other network architectures is the
converging criterion. Although Hopfield Networks are guar-
anteed to converge to a local minimum, they might converge
to a wrong local minimum denoting a false pattern rather
than the actual pattern (expected local minimum). With the

size of the training data (24000) rows, we can expect that
there will be a lot of noise added to the pattern and thus the
network fails to converge to an expected local minimum.

Table 5: Evaluation - Hopfield Networks
Precision Recall F1 Score Support

0 - Non-Defaulter 0.86 0.86 0.86 5842
1 - Defaulter NA NA NA 1660
Unclassified NA NA NA 0
Average 0.67 0.67 0.67 7502

This makes it impossible for the network to identify some
test inputs and thus it renders a fraction of the test dataset
”unclassifiable”.

Conclusion
Most neural networks techniques are good candidates for
classification problems. However, based on the inherent
properties of the data set (for example, in the case of LVQ
implementation) and the architecture of the network in use,
we cannot generate a ’one fit for all’ model. From our ex-
periments, we conclude that the Multi-layer Perceptron is a
better neural network model among the variants we tried. A
possible reason is that the MLP network deals is a good fit
for data sets with non linear properties.

References
Evgenij, Z. 2013. Neurolab. In A simple and powerful
Neural Network Library for Python.
Hebb, D. 2002. The organization of behavior: A neuropsy-
chological theory. JLawrence Erlbaum.
Karagiannis, K. 2016. Rise of hacking machines. In RSA
Conference - San Francisco, Moscone Center.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.

